
NASA-CR-1 91603

_ns Learned in the Implementation Phase of a

Large Ada TM Project

1 2
Carolyn E. Brophy , Sara Godfrey ,

William W. Agve_ti 3, and Victor FL B_ili t

Department of Computer Science

University of Maryland
College Park, M]3. 20742

2 Godd_rd Space Flight Center 3
Code &52.1

Greenbelt, MI). 20771

12 ;17 / [

Computer Sciences Corporation

Sy_em Sciences Division
879.8 Golesville Road

Silver Spring, MD. 20¢10

tt_
,0
o-
o

I

o-
z

U
C
D

' i

d
Abetra_ct

We need to under_tand the effects that introducing

Ada ha_ on the softwar_ development environment.

Th_ paper ;_ about the lessona learned from am ongoing
Ada project in the Flight Dynamics divlsion of the

NASA Goddard Space Flight Center. It is part of a

series of lessons learned document, being written for

each development phase.

FORTRAffq i, the usual development language is

this environment. Thi_ project is one of the first to use

Ada in this environment. The experiment oon__ts of "

the development of t_vo spacecraft dynamics simulatom.

One is done in FORTRAN with the usual development

techniques, and the other is done with Ada_ The Ada

Eimulator is 135,000 linen of code _OC), and the FOR-
TRAN simulator is 45,030 LOC.

We want to record the problems a_d successes

which occurred during implementation. Topics which

will be dealt with indude (1} use of nesting v_ library

units, {2) code reading, (3) unit tczting, Lnd (4) le_,ons
kaf_e_ tt_ing Sl_Ci_a] Aria feltures.

It in important to remember that these results are
derived from one specific environment; we must be very

etrefttl when extrapolating to other environments.
However, we believe this is • good beginning to I better

tmder,taadlng of Ada use in produc:.ioa environments.

Aria ia • trad¢_ of the Uq. Department o(Dcfem¢ - A.di Jolt
Profram Offgt.

Coa_ C.4umilru Beophy. Dept.•meat. of Computer S¢i¢e¢¢.
Uixlvtl'iity d Marlrl_ad, C.olh:lfe Park, _ 20742. (301) 4_-
6154.

Suppoet foe this _setreh p_vided by NASA ilrlalt NSG-$123 to the
UQiveraity d MLryltad.

C3
A'da ineorpot_t_ many softwasx development con- L_

eepta; it is much move than "just another language". Z

A* such, we need to under_tand the effects of introduc- -<

ing Ad_ into the _oftware development environment, u_J
This paper o0ncentrates on the le._ons lean-ned from an

ongoing Ada project in the Flight Dyna_mic_ Division of _oZ
the NASA Goddzrd Space Flight Center (CSFC). The <3

Ada project is sponsored hy the GSFC Software o3
Engineering Laboratory (SEL). It is part of a serle_ of w
lemons letumed doeument_ being written for each -J

development phase.

w3
Environment C

_+
FORTlZA_ is the usual development language in .q

this environment. The flight dynamics applications _"
r-4

involve m'mslon analysis and spacecraft orbit and atti- I

tude determination mad control. Many of the software o_

development projects are similar from mission to mis- _1

_ion provldlng, for example, tn attitude ground support <t')
system or an attitude dynamics simulator. This pattern _t

of developing similar applications is important for 7-

domain expertise and for the legacy developed in thl, "_

envirot_nent for code, designs, expectations and intui-

tions. The similarity between projects allows a high

level of reuse of both design and code. Since the

problems art basically familiax ones, the development
.methodologies which involve much iteration do ant se_m

to be necessary. The waterfall development modal is

basically u_sed here, "and seems to work well in thh ease.
Lessons learned from the initial uses of Ada do not

include changing this basic methodology.

Project

The project was originally designed ts • parallel

study with two team,. Each _vould develop a spacecraft

dynamics _imulator, one with FORTRAN as the imple-

mentation language, trod one with Ada as the implemen-

tation language. The specifications for each simulator

were the same, supporting the upcoming Gamma Ray

Observatory (GRO) minion. However, there are many

LL

LU ill

<C3
C

CL

t'- <t

I-- t2. _',

&

_'-"t3C

•2_I r-"

z ,,_ Ir

[

[

[

5207

4-24
pR_CED!NG P_GE f#.AT!K NOT FILMED

r
I

L

oth<f difterence_ bet_aeen the peoject_ _uhich keep the

study from being truly "'parallel". The FORTRAN ver-

sion wtm the production version, thus they had schedul-

ing pre_ures the Ada team did not have. Without

scheduling pressures, the Ada team made enhancements

in their version not required by the specification, which

increased time spent on the project. This was also the

6r_t time any of these team member_ had dove an Ada

project, while the FORTRAN team was quite experi-

enced with the u._e of FORTFLAJq. The Ada team

required training in the language and development

methodologies a._ociated with Ada, while the FOR-

TRA_ team did thing* in the usual way [McCarry,

Page et al. 83]. The Ada team als0 experimented with

various design methodologies; this was nece_mary to find

which on_s would work better for this development

environment. The FORTRAN team was working with

a mature and stable environment. In _'itehing to Ada,

the legacy of retie for design, code, intuitions and

experience are gone, and will be rebuilt, slowly in t_he

new language.

The philosophie_ of development were quite

different between the two projeck,. The Ada team con-

sistently applied the ideas of data abstraction and infor-

mation hiding to their design development. The FOR-

TRAN develgpment used structural decompozltion

methods.

Our goMs with this project include:

{1) How in the _ of Ada characterized in this

environment?

(2) How should the. existing development proce._ be

modified to best changeover from FORTRAN to

Ada?

(3) %Want problems have been encountered in

development*. What ways have we found to deal

with them?

Current Project Status

Both the FORTRAN tad Ada f._a.ms stax_d in

January. lOgS. The Ada team began with tndnlng in

Ada_ while the FORTRAN team immediately began

requirements _nalys'ts. The FORTRA/q team delivered

its product (dSK} after completing acceptance testing in

June, Ig87. The Ada team is scheduled to finish system

t_ting its 135K product in February, 1988. Discussions

of the product size differences and effort distributions

are presented in [McGarry, Agresti 88 I.

The lczzoa* leaened from major phases in the Ada

development are being recorded in tt series of SF_.L

reports: Ada training [Murphy, Stark 85], design [God-

frey, Brophy 871, and implementation (in preparation].

This paper prezentz some of the main results from the

implementation (code and unit te_t] lessons learned.

5207

I.m_6n_ Learned

1. Ne._ting vs. Library Unit*

1.2 The fl_t Mrucfure produced by usin 0 Iglorary untt_ has

advantages otKr _a hcavtll/ ncMcd _tructur¢

Ne_ting h_ man)- effects on the r_ulting product.

The primary advantage of ne_tlng is that it enforces the

principle of information hiding structural!.V, because of

the Ada visibility rules. \Vherea,s with library units, the

only way to avoid violations of information hiding is

through self-dlscipline. In addition, the dot notation

Lells the package where a module is located.

There are quite a few disadvantages to nesting.

however. Nesting makes reuse more difficult. A second

dynamic5 simulator in Ada is now being developed

which can reu_ up to "10% of the Ada project's code.

But in order to reuze it, the ne_ted code ha._ to be

ur_nc_ted, since the new applicatio0 only needs some of

the nested units. This is often a labor intensive opera-

tion. Nesting aLso increases the amount of reeompila-

tion required when changes ar_ made, since Ada

a_'_umes dependencies between even sibling nested

objects/procedures, even when the dependency is not

really there. This requir_ more parts of the system to

be recompiled than iS necessary when more library units

are used. It is also harder to trace problems back

through he*ted levels than it is through levels of library

units. There is no easy way to tell where a unit of code

was called from, when it is ne_ted. But library, units

have the "with" clauses to identify the source of a piece

of code. For this reason it is now believed that over use

of nesting at the expense of using more library units

makes maintenance harder. This is contrary to the

team's earlier expectations. The team had used nesti0g

successfully before on a 5000 lines of code training pro-

ject. However, this kind of approach does not scale-up

well when developlng large projects.

Library units seem to have a lot of advantages.

13esi_es fewer recompilatiotLS when changes are made,

and'easler unit testing, every library unit can easily be

made visible, to an)' other library unit merci)" by uze of

the "with" clause. In nested units this visibility does not

exist, and a debugger becomes esSenllal to see what is

happening at the deeper levels that are not within the

scope of the test driver. Library units allow smaller

components, smaller files, smaller compilation units, and

less duplication of code. The system is more maintain-

able, since it is easier to find the unit desired. Reuse

with librarT units is also easier, since the parts of the

system are smaller. Configuration control is also easier

with library units since more pieee_ are separate (i.e.,

the ratio of changes to *:ode segments modified is clo_r

to I}. The major disadvantage seems to be that a com-

plicated fibra D" structure develops, _'hich can lead to

error's by the devcloper_. However, if the Ada project

were to be done over now, the team would use more

llbraQ" units, and nest [e__.

4-25

Advantages and DLxadvantage_ of

Nesting vs. Library Unit_ [

NESTING

Advantages D_advantage_

• information hiding

° visibility control

" type declarations in

one place

• enlarged code

• more recompilatiou-_

° harder to trace problems

through nested
level',

• can't easily tell where a
unit of code called

from

• type declarations in one

place mean_ problems
for reu-_:

• harder maintenance

• debugger r.quired

• larger unit sizes

inhibit code reading

" harder to reuse part of

the system

LIBRARY UNITS

Advantage_

• fewer r_compilatio_s

• easier unit testing

• smaller components
° smaller fal_

• smaller compilation units

" le_ code duplication
• easier maintenance

° "with" clauses show source

of other code' units used

4 ex.';ier reu._

• easier configuration control

D_adv antares

• no information hiding

• complex library structure

I.E The 6dance 6¢tt,een ne.stinf and libr,,ry vnfls _L en

imporLnnl implemenl,,tlon i_,ue, _t a de, lea i_u¢.

The issue of whether to use library units or nested

units first aslses in the design phase. At least this is the

case if it is assumed that the design documents reflect

this aspect of implementation (i.e., the design docu-

ments indicate in some way when nesting is intended vs.

when library un;ts should be used). XVhile it is

appropriate for the design to show dependencies, the_

should not dictate implementation, as.far as the library
unit/nesting question is concerned. The team con-

sidered the decislon_ concerning nesting/llbrary units to

be an implementation Ls_ue.

5207

The library units in the Ads project went down

about 3 to 4 levels, while nesting went down many lev-
els below that. Another view of the system shows the

Ads project had 124 packages a,,d 5.5 library units.

During implementation most team members felt an

appropriate balance had been reached between nesting

levels and number of library units. However, in retros-
pect, several felt the nesting had been overdone.

4-26

[_

[

V
t.

L

[

L

L

L

L

L

L
1

L

(

1.._ /'I appC4_r_ _c_ to u_e li/_rarF _aniL6 al Lca._l da_'n _a

LI_e 4rab_F*tcm lc12cl, and nc_lin9 al lower levels _shcrc

_hcrc is minimal i, teraelion amonq a ,mall number of

mode.It*

,_cpcrienees with unit te*ting seem co indicate that

libracy uniLs should at le_t go down co the subsystem
level. Thi_ make* te_ting easier. Below th'_ level the

benefit* of nesting sometime* become too important to

ignore. This i5 one heuristic which could be t_ed to

help determine u-hen the transition from library units to

nested unit* should occur.

Am additional way to determine when the transi-

tion should occur is to examine the degree of interaction

between pieces. For modules ,which interact heavily,

library unit* _re preferred. At the point where the

interaction drops oft0 u_ing nested uniLs is preferable.

Sections with nested code are easier to deal with _hen

they are small.

I.$ In mappin¢ design to code, caution _hould be _ed in

applgin 9 too rigorou-s " set of rules for _ibility control

In an attempt to control visibility, two features

appear to have been Zoo rigorously applied. The first

feature is nesting. The design of the Ads project

seemed to suggest • particular nesting implementation.

But this created many object* within object_ yielding a

high degree of nesting. The second way to control visi-
bility is through the use of many "call-through"s (a pro-

endure ,•hose only function is to call another routine).

"Call-through"s were used to group appropriate pieces

together exactly as represented in the design. They can

be implemented via nesting or library units. Faithful-

ne--_ to the design sttmcture was maintained this _'ay.

The design had non-primitive objects with specific

operations. These objecLs were implemented as pack-

ages. To put the specific operations (subprograms) into

the object_ (packages) the team used "call-through"s.

Thu_ a physical piece of code was created for every

object in the design. "Call-throttgh"s art one of the

reasoa_ for the expanded code in the AdA project when

compared to the FORTRAN version. It is estimated

that out of the 135K LOG making up the Ads system,

"22K LOC (specifications tad bodies) art because of

"call-through"s. While "'call-through"s provide a good

way to collect things into su_ystems, these should be

limited to only two or three levels in the future.

If the implementation were to be done over hog',

many of the existing "call-through"s *'ould be elim-

inated, lmte•d of creating actual code to correspond

,A'ith every object in the design, some objects in the

design would remain "logical object*". No actual pack-

ages would exist; in_tead, • logical object would be

made up of • collection of lower level objects.

2. Code Reading

Code reading is generally done with unit testillg.

The developer doing the code reading is not the one

5207

_'ho developed the code. Comment* are returned co the

original developer. After code reading and unit testing,
the unit is put under configuration control.

*.1 Code re•din 9 h¢lpe in tralmn¢ people fo u_¢ Ads.

13eside_ helping to find ervor_, code reading ha_.the

benefit of increasing the proficiency of team members in

Ads. Individuals can see ne_' way_ to handle the algo-

rithms being encoded. C,ode reading also allows another
person beside* the original developer to under,tend a

given part of the project. This i_ight should help

under_tandlng and lead to better so[utlons of problems
in the future.

£.2 Code re•dine help, isolale _¢vle and lo¢ic <rrors.

The mo_t common error's found in code reading

with Ads were style error_. The style errors involved

adding or deleting commen_, format changes, and

changes to debug code (not left in the final product).
Other types of error_ found are initialization errors, and

problems with incompatibilities between design and

code. This can be due to either a design error or • cod-

ing error.

Because the Ads compiler exposes many errors not

expos•hie by • FORTFLA]q compiler, code reading Ads
ha* • different flavor than code reading FORTRAN-

For example, i.he Ads compiler expose_ such errors as

(1) wrong data types, (2) call sequencing errors, (3) varl-
able errors- either the variable is declared and never

_ed, or it is used without being declared. .So, one
seasoned FORTRAN developer working on the Ads pro-

ject noted that code reading is more interesting in FOR-

TRA.N, since there were more inGrestiag error* found in

code reading FORTRAN, not found in reading Ads

code. In general, logic error_ are hard to find in this

application domain, but enough logic errors •re found to
make code reading worthwhile.

Some of the dit_culty of code reading with "Ads on

this project was due to the heavy nesting and the

number of "'call-through" units. Code reading would

have been helped by a flatter implcment•tlon. The
SEPARATE facility makes it necessary to look in many

places at once to follow the code. However, code read-

ing in Ads v,-as easier than in FORTRAN beeat_se the

code was more English-like, and hence, more readable.
Often the reused FORTRAN code is an older variety

without the structured constructs available in later ver-

sions.

Code reading tended to miss errors that spanned

multiple units. This _'ould be expected with an)" imple-

mentation language as.wall. One example was a prob-
lem where records _ere skipped ,*'hen they were being

output. The debugger actually found the problem.

Despite the implementation language, code reading

appears to be imr_rtant for highly algorithmic routines.

4-27

i<,

Groups of routine_ that ar_ _ only to call otbec_ may

be checked to make sure the d_igu's purity is main-

tained.

3. Unit Testing

.1 Unll telling lu found 1o bc _ardcr t_h Ad,_ _an

u_h FOR TKAN.

The FORTRAN units ar_ already relatively iso-

laved, this makes unit testing et_'. Only the global
COMMONs need to be added to do the unit t_ts. On

the other hand, the Ads unit_ require a lot of "_ith'd

in" code, and are much more interdependent. Another

very different Ads project had perhaps even more inter-

dependence between its modules than the Ads project
did. That tcatm also found the interdependence made

unit testing very di_cult. More interdependence exists
between Ads units becau__ there are more relstion_ to

express in Ads. There are textual inclusion (nesting),

with-ing in (library units), and invocation. FORTILAN

only has invocation.

S.£ Tl_c inlraductfan o/ Ads as the. implcmentatfan

£anguage changed the unft _:_/inf methods dramatfcaUy.

Unit testing with Ads w_ done very differently.
Since one unit depends on many others, it is usually

hard to test a unit in isolation, so this was generally ant

done,: The Ads piec_ were integrated up to the pack-
age level, and then unit t_ting was done. Then testing

was done with groups of units that logically fit together,

rather than actual unit testing. The integrated unics

are tested, choosing only a subset of possible path_ at •

time. The debugger is u__d to look •t • specific unit,
since the test drivers cannot "see" the nested ones.

With Ads projects a debugger becomes emential. This

is in contrast to the usual development in FORTIL_N

wher_ no invegration occurs at all until after unlt tesl,-

ing.

This shows that the biggest difference between the

way FORTRAN and Ads projects are done at this point

in development is incremental integration. This actu-

ally represents • change in the development lifecycle of

an Ada product: integration and unit testing are •her-

navely done rather than finishing unit testing before
integration.

_'.S TA¢ llbr•r_l _nlt/nestln¢ level i_sue dlrccLly "_ffee_

the di_cully of unit teetin¢.

The greater the n_tiog level, the more di_ieult
unit testing is, since the lower level units in the subsy, s-

tem are not in the scope of the test driver. This is the

primary reason • debugger becomes a required testing

aid with Ad• projects. For this reason, more library
units and less nestlng would have made testing easier.

Library units have to go dog'o to a level in the design
that makes testing more feasible. With the Ada project

that would have meant taking librar): units down to a

Io_-er Iex-el in the d_ign, if the project _ere to be done
ovcr.

Two other way_ to deal with the ne_ting during
unit test were tried and were not very succe_ful. One

solution pulls an inner package out, and includes the

typ_ and "with'd in" modul_ the outer package cased
in order to execute the inner one. This is dit_cuh to do

for each unit. The other solution is to modify the

specifications of the outer package so that nested pack-

ages can be "seen" by the test driver. This solution

requireslots of recompilation. \Vhh more library units.

there would be 1_ recompilation, because there ,_'ould
be fewer changes of _'peeificatlons. Again however, the

best way to test was to _e the debugger on unaltered
Code.

5.1 The importance of unit le_tin¢ Leerr_s to be more

related to applicaL_on area lhan Io implementation

language.

Whether the implementation is in FORTRAN or

Ada, do_ not _em a._ important as whether the appli-

cation h_ lots of calculations or has lots of data mani-

pulatlorm. Unit testing seemed more valuable with

scientific applications; perhaps becau__ calculation error_

show up when only a small amount of localized code is

executed. But data manipulation errors require more of
the system to be operating before it is known if error_

are present.

4. Use of Ada's Special Feature.n

4.1 Separatfon of _pecfflcatlons and 6odies is quftc

bcneficfal and easy to imp&menlI.

The team entered the specifications first, whenever

possible, before the rest of the code. This gave • high

level view of the system early in the development.
Another benefit is that this helped clarify the interfaces

early. Separating the specifications and bodies also

reduces the •mount of recompilation required when

changes are made.

._.£ Gcncric_ _re /alrly ea_y to implement and _hey

reduce the amount of code rcqu/red.

The only problems encountered *'ere with correct

compilation of the generics in some cases, due to com-

piler bugs in an early version of the compiler, rather
than incorrect code. As Ada matures, this will not be •

problem at all.

•l.3 (l_fnf ton many types mereasee codfnf diff_e_l_v

The strong typing was very difl3cult to get used to,

when one is accustomed to weakly typed languages such

FORTRAJq. It was easy to create too many ae,_
types as well.

Often • brand new type was created with a strict
range appropriate for one portion of the application-

Then in other areas where subtypes could have.been

used, the range on the original type wa_ found to bc too

restrictive, so a,other brand ne,_ type _,.a._ created

instead to handle the new situation. Then a _'hol¢ ne_"

4-28

[-

[

[

[

[

[

[

[

[

[

[

[

[

[

.

[

5207 f

J

3
7
I

7
u.d

J

m

J

l
]

]

b

I

t of operation had to be created a._ well for the addi-

tlooal new type. Next time the teasn _vould r_commend

creating a more general new type, and using many

dilterent subtypes of the original type, rather th_n

crewing more new types. In this way operations can be
reused and there are far fewer ma/n types to keep track

of- Designers need to spend time developing families of

types that inherit properties from one another.

The strong typing presented some problems when

testing units, though it prevents some kinch of error_,
also. It was harder to write test driver_ that could deal
with all the types in the units being tested. It was also

harder to do the I/O, since so many type_ had to be
dealt with.

,[._[T_l_'t_ _ difffcgll £o code and le6t, ho_cer, £A_

,cemta due £o concurrent3: a'n fener¢/ and nor Ada

.vecif_:d_.
Task_ were used in the user interface part of the

project. The user was given many options which made
the inter_ctlous between the task_ of the auhsy_tem

very difficult to plan a_ad execute corred.ly.

It was harder to code tasks from the design than it

was to code other types of unit_. However, this is not

really due to Ada_ but rather it is the nLture of cow

currency problems. The language made the use of task-

ing easier, and encouraged the developers to use tasking

more than they would have otherwise. The dynamic
r_latioushlps of concurrency cannot be represented in

the design (termination, rendezvous, multiple threads of
control). C..orrec_ne:_ was very difficult to assure, as is

usual with these kinds of problems, and deadlock was
.hard to avoid. Functional testing was done, which is

the mud type in this environment.

The major problem the developers had was with

exceptions. These are no worse with tasking than they
are with any other program unit, however.

9.5 EzeepKon _nd2cre 6_c _ 6c coded carc/td/g.

The key problem with exceptions is deciding the
best way to handle them. Errors and the sources of

errors can be hard to find if the exception handlers are

not coded carefully. Suppose a particular procedure will

call another unit, expecting some function to be per-
formed, and certain kinds of data to be returned. If an

exception is raLsed and handled in the called unit, and it

is non-specific for the problem raising the exception

(e-g., "when others") , the caller gets control back

without the required function being performed. But the

exception was handled _.nd data wa_ returned, so the

call looks successful. Yet as soon as the caller tried to

u_ the data from the routine where the exception was

raised and handled, it fa31s. Because of propagation, it

can be very. difficult to trace back the error to the orlgi-
all source of the problem.

5207
4-29

Several member_ of the t_am would recommend

incorporating the way exception_ are to be handled inn3

the design, rather than leaving this until implementa-

tion. Put into the design (1) _,hat exception would be

raised, (2) where it will be handled, and (3) what should

happen.

Ada Feature"

implementation
e_e benefit

tasking

genetics +
strong typing 0

exception

handling 0

nesting +

_p_u-ate

specs/bodies ++

+

++

0

++

* This figure represent_ a subjective a_messment
based on team member interviews

Summary

We have learned several important things about
four major are_ in implementation. There are m_L_y

advantages co using library units, though nesting can

have its nsefulne__ at some point below the subaltern

level. Code reading helps train people in Ada, and helps

to isolate style and logic errors. Unit testing was sub-

stantially changed by using Ad_" the first stages of

integration often began before unit testing proceeded.

Some Ada featur_ are quite powerful and should be

ca_fully used.

It is important to remember that these resultsare

derived from one specific environment. We must be

very careful when extrapolating to other environments.

There are also many questions still left to be anm#ered.

Studies of this project will continue, and other Ada pro-

jects are being started. These will help us evaluate the

effects on longer term issues such as reuse and maintai-

nability of the Ada projects. We believe this project is

a good beginning to a better understanding of Ada u_e

in production environments.

Acknowledgements

The Ada experiment is managed by Frank

McGarry of NASA/GSFC. The authors would like to

thank him and the Ada team for their cooperation and

assistance.

IAgresti 85]

Agresti V¢., "'Ada Experiment: Lessons Learned

(Training/Requirementz Analysis Phase)", Goddard

Space Flight Center, Greenbelt, ,k_D 20771, August

1985.

{Godfrey, Brophy 87]

SEL-87-O04, "A_sse_ing the Ads Design Process and

Its Implications: A Case Study", Godfrey S., and

Br_phy C., Coddard Space Flight Center, Green-

belt, MD 20771, July lg87.

[McGarry, Agresti 88]

"'Measuring Ada for Software Development in the

Software Engineering Laboratory", Hawaii Interna-

tional Conference on Systems Science, January,
1g88.

[McGarry, Nelson 85]

McGarry F., and Nelson R., "An Experiment with

Ada -- The GRO Dynamic_ Simulator Project
Plan," Goddard Space Flight Center, Greenbelt,

/vii) 90771, April 1985.

[McGarr_', Page et al. 83]

SEL,-81-2OS, "Recommended Approach to Software

Development", McGarry F., Page J., Eslinger S.,

Church V., and Merwarth P., Goddard Space

Flight Center, Greenbelt, MD 20771, April 1983.

[Murphy, Stark SS]

SEL,-_5-O02, "Ada Training Evaluation and Recom-

mendation, from the Gamma Ray Observatory Ada

Development Team", Murphy R., and Stark M.,

Goddard Space Flight Center, Greenbelt, ,MD

20771, October 1085.

5207

4-30

O_i(_iNAL PP.C_ IS

OF POOR QUALITY

I3iographiez

Carolyn E. 13rophy is a graduate r_seai-ch assis-

tant at the University of Maryland, College Park. Her

research interests are in ._oftware engineering, and she. is

working with the NASA Godd_rd Software Engineering
Laboratory. ,k_. 13rophy received a B.S. "degree from

the University of Pittsburgh in biology and pharmacy.
She is a member of ACM.

Sara H. Godfrey is with Coddard Space Flight

Center in Greenbelt, Maryland, ,Ahere she has been

working with the NASA Goddard Software Engineering

Laboratory. She received a B.S. degree from the

University of Maryland in mathematics. (picture miss-

ing)

William %V. Agre._ti is with Computer Sciences

Corporation in Silver Spring, Maryland. His applied
research and development project_ support the Software

Engineering Laborato_" at NASA's Goddard Space

Flight Center. His research interests are in software

proe¢_ engineering, and he recently completed the

tutorial text, New Paradigms /or SoJ(ware Deuclopmen(.

for the IEEE Computer Society. From 1073-83 he held

vario_.s faeuhy and administrative positions at the

University of Michigan-Dearborn. He received the B-S.

degree from CLue Western Reserve University, the M-S.

and Ph.D. from Ne_,' York University.

Victor R. Basili is Professor and Chairman

of the Computer Science Department at the Univer-

sit)" of Maryland, College Park. Maryland. lie _a_

involved in the design and development of r_veral

software projects, including the SIMPL family of

programming languages. He is currently measuring

and evaluating soft--are development in industrial

and government settings and ha_ consulted with many

agencies and organizations, including IBM, GE,

CSC, GTE, MCC, ATkT. Motorola, liP, .N'IRI.,

NSWC, and NASA.

F-
I_

E

E

[

[

E

[

[

[

[

[

[

[

[

[
"e,,

!

F

tte i5 one of the founders and principals in the Software Engineering Labora-

toO', a joint venture between NASA Goddard Space Plight Center, the University of

Mao.land and Computer Sciences Corporation, e_tablished in 1_76. He h_ been

_orking on the development of quantitative approaches for software management,

engineering and quality assurance by developing models and metrics for the
software development proce_ and product.

Dr. Ba_ili ha_ authored over _0 papers. In 1082, he received tile Out-

standing Paper Award from the [EEE Tran_aetio_ on Soft_'are Engineer-

ing for his paper on the evaluation of methodologies.

He was program Chairman for several conferences including the 6th Int,_rna-
tional Conference on Softwar_ Engineering. He serves on the editorial boards of

the Jo,_rntd o/ Systerrts nnd So/tt_ar_ and the IEEE Transaction.s on Software

Enqi.eerirt¢ and is currently Editor-in-Chlef of TSE. He ks a member of the Board

of Governor_ of the I_F__.E Computer Society.

1

I

5207

4-31

